

**EELISA Student Scientific Competition** 

**European University** 

Quentin Winther Patrik Pesti Mina Stefan Gabriel Oğuzhan Tekeş

# Introduction

#### What is a smart city?

European University



- Urban area that uses digital technology to collect data and operate services on many levels.
- Not defined by a single product or innovation
- Composite of cutting-edge technologies --> technological improvements
  - Data driven infrastructures
  - Smart healthcare systems and case prediction
  - Optimized traffic control
  - Optimized energy sustenance
  - Smart products







# Data for detection and prediction

#### Importance of data - healthcare



- Understanding and knowing when and how health hazards occurs is imperative
- Goal:
  - Predict daily incidences with global parameters like weather
  - $\rightarrow$  Optimal hospital resource allocation
  - Identifying risk factors and high risk days

- Algorithms tested on:
- Hungarian OHCA database, meteorogical database
- Known risk factors:
  - Global: weather, social background, seasonal changes
  - Individual: age, sex, genetics, recreational drug consumption (e.g. tobacco, alcohol), obesity



#### Healthcare – predictions (OHCA detection)



6



#### Importance of Data – Traffic Detection



- Information about current and exact traffic information is extremely relevant for optimization
  - Enhancing navigation
  - Identifying accidents
  - →Optimal traffic light control
- Known solutions for car detection using convolutional networks
- NOW: maritime surveillance with satellite imaginary





#### Ship Detection



- Masked R-CNN
- ResNet50 backbone
- 384^2 RGB input
- 384^2 grayscale
- Optimizer: Adam
- Learning rate: 10e-4
- Loss: BCE
- Sigmoid activation

| Layer (type)                             | Output Shape                                                           | Paran #   |
|------------------------------------------|------------------------------------------------------------------------|-----------|
| input_image (InputLayer)                 | (None, 384, 384, 3)                                                    | 0         |
| functional_3 (Functional)                | [(Nane, 96, 96, 256),<br>(Nane, 48, 48, 512), (Nane,<br>24, 24, 1024)] | 8,589,184 |
| conv2d_3 (Conv2D)                        | (Nane, 24, 24, 256)                                                    | 2,359,552 |
| conv2d_transpose_8 (Conv2DTranspose)     | (None, 48, 48, 256)                                                    | 590,888   |
| conv2d_transpose_9 (Conv2DTranspose)     | (None, 96, 96, 256)                                                    | 590,080   |
| conv2d_transpose_10<br>(Conv2DTranspose) | (Hane, 192, 192, 256)                                                  | 590,080   |
| conv2d_transpose_11<br>(Conv2DTranspose) | (None, 384, 384, 256)                                                  | 590,080   |
| mask_output (Conv2D)                     | (None, 384, 384, 1)                                                    | 257       |

Total params: 13.309.313 (50.77 HB) Trainable params: 13.278,721 (50.65 MB) Non-trainable params: 30.592 (119.50 KB

- Accurate detection (Val\_loss = 0,0056), but crude outline
- Post processing for exact outline:
  - Ocen removal
  - Canny edge detection (gradient change)
  - Filling inside edges



## Traffic optimization

### Smart traffic lights







Sensors and cameras





Image detection, machine learning, prediction

10





Busy intersection, jammed on peak hours

A lot of time lost

Stressed people going to work can lead do dangerous maneuvers

A crossroads in the east of Madrid





#### Benefits of smart traffic lights

- Reduced journeys times
- Less CO2 emissions
- Avoiding dangerous and stressed behaviors
- Less accidents
- Flow management adapted to the reality of human behavior: flexible and accessible

#### Smart energy generation





#### 37000 people on average/day



# Station-Based Passenger Usage on the M2 Metro Line in 2024

15

#### Power management and sustainability





small amounts of energy for LED signs/traffic lights (10 bulbs for 20s)

#### Reality of the system



#### **Benefits**

- renewable energy
- data collection
- sustainability
- no limitations

#### Risks

- high cost (110€ each)
- mentainence
- energy storage
- low power output
- space for wiring

#### Most optimal placements

-busy metro stations -concerts/festivals -schools/universities -playgrounds

#### Japan (Tokio) Shibuya station

-since 2008

-400000 commoners pass daily

-140 Wh/day

-150 €/m<sup>2</sup> (installed)



# Interaction of the people and the city

#### **StepVOLT**





#### Modular Kinetic Tile + Display Unit

#### Core Part:

•Pressure-sensitive kinetic tile (like Pavegen): captures kinetic energy from footsteps, converts it into electricity.

•Modular and replaceable – tiles can be laid in rows in metro entrances, parks, or walking corridors.

Detachable/Changeable Add-ons: •Swappable display modules (LED/OLED) with solar backup.

•Customizable shell casing or art-skin: community can redesign the housing.



#### Average PM 2.5 concentration in Paris





Source: Airparif

#### Interaction Logic

- Every step generates a small amount of electricity (measured in Wh).
- That energy is tracked *per tile* and *per user (optional with card/sensor use)*.
- The display shows:
- "You generated X watt-hours today!"
- Image: By using M2 Line instead of driving, you saved Y kWh."
- — "Your steps powered 2 minutes of metro lighting today."

Can also show:

- Leaderboard
- Monthly collective community goals
- Gamified messages (e.g. "You've just powered a streetlamp for 15 seconds ?")





# Q&A





Smart

Agriculture

1

Smart Health

Smart

Infrastructure

Smart Industry

Smart

City Services

**FI**IR

Smart

Transportation

Smart Homes

1